A Practical guide to Autoencoders

Usually in a conventional neural network, one tries to predict a target vector $y$ from input vectors $x$. In an auto-encoder network, one tries to predict $x$ from $x$. It is trivial to learn a mapping from $x$ to $x$ if the network has no constraints, but if the network is constrained the learning process becomes more interesting. In this article, we are going to take a detailed look at the mathematics of different types of autoencoders (with different constraints) along with a sample implementation of it using Keras, with a tensorflow back-end.

Reading Time: 22 minutes       Read more…

Understanding Boosted Trees Models

In the previous post, we learned about tree based learning methods - basics of tree based models and the use of bagging to reduce variance. We also looked at one of the most famous learning algorithms based on the idea of bagging- random forests. In this post, we will look into the details of yet another type of tree-based learning algorithms: boosted trees.

Reading Time: 26 minutes       Read more…

Understanding Support Vector Machine via Examples

In the previous post on Support Vector Machines (SVM), we looked at the mathematical details of the algorithm. In this post, I will be discussing the practical implementations of SVM for classification as well as regression. I will be using the iris dataset as an example for the classification problem, and a randomly generated data as an example for the regression problem.

Reading Time: 12 minutes       Read more…